Gaining Leverage in Engineering by utilizing eCl@ss
Table of content

1. What Engineering? 3
2. What Product Data Quality (PDQ)? 6
3. Why integrate PDQ into Engineering? 8
4. What is the eCl@ss engineering impact formula? 11
5. What is needed to support 2030 Engineering? 13
6. What shall be possible, how are we striving? 15
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>What Engineering?</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>What Product Data Quality (PDQ)?</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>Why integrate PDQ into Engineering?</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td>What is the eCl@ss engineering impact formula?</td>
<td>11</td>
</tr>
<tr>
<td>5.</td>
<td>What is needed to support 2030 Engineering?</td>
<td>13</td>
</tr>
<tr>
<td>6.</td>
<td>What shall be possible, how are we striving?</td>
<td>15</td>
</tr>
</tbody>
</table>
What Engineering? Efficiency gains must continue …

<table>
<thead>
<tr>
<th>Year</th>
<th>Hemisphere</th>
<th>Efficiency Gain</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td></td>
<td>$C_E \approx 0,2 \ C_P$</td>
<td>Quelle: Deutsche Digitale Bibliothek</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>$C_E \approx 0,1 \ C_P$</td>
<td>Quelle: CADcompany</td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td>$C_E \approx 0,05 \ C_P$</td>
<td>Quelle: Siemens</td>
</tr>
</tbody>
</table>
What Engineering? … and they will continue …

Open, virtual and networked operation. Digital workflow with TIA Portal

Reduce your time-to-market. Integrated engineering with TIA Portal

Increase your productivity. Transparent operation with TIA Portal

e.g. Siemens Offerings for the Digital Enterprise
TIA Portal, COMOS, TeamCenter, AutomationDesigner, ProcessDesigner, NX, Technomatix
Table of content

1. What Engineering? 3

2. **What Product Data Quality (PDQ)?** 6

3. Why integrate PDQ into Engineering? 8

4. What is the eCl@ss engineering impact formula? 11

5. What is needed to support 2030 Engineering? 13

6. What shall be possible, how are we striving? 15
What Product Data Quality?
Theories … Standards … Empirics ➔ Simplified Heuristic

1 Standard (Norm)
DIN ISO 10303

2 Definition
Produktdateien haben eine hohe Qualität, wenn sie geeignet für ihre beabsichtigte Verwendung sind.

3 Interpretation
The big three C:
C₁ Completeness
C₂ Correctness
C₃ Coherence

Proposal
PDQ [0…1] = PDC₁ [0…1] × PDC₂ [0…1] × PDC₃ [0…1]
Table of content

1. What Engineering? ... 3
2. What Product Data Quality (PDQ)? 6
3. **Why integrate PDQ into Engineering?** 8
4. What is the eCl@ss engineering impact formula? 11
5. What is needed to support 2030 Engineering? 13
6. What shall be possible, how are we striving? 15
Why integrate PDQ into Engineering?
Because of increasing workflow complexity and integration…

1. Automatic execution of engineering tasks
2. PLM integration to automation engineering
3. Efficient cloud-based engineering
4. Virtual commissioning
5. Integrated Energy Management
6. Machine and plant security
7. Data acquisition for Cloud Services
8. Communication networks to handle IIoT data

Integrated Engineering
- **Mechanic**
- **Electric**
- **Automation**

Digital Workflow
- **Simulation and Commissioning**

Transparent Operation
- **MES/SCADA**
- **Energy Management**

8. Cloud

7. Maintenance and Optimization
- **Production**

Product Master Data, enhanced by dynamic Properties and Relations ➔ Distributed Digital Twin Repositories
Why integrate PDQ into Engineering? for NCC down

Third party applications
Cloud-based, open IoT operating system: MindSphere

1. Product design
2. Production planning
3. Production engineering
4. Production execution
5. Services

Collaboration platform: TeamCenter

Mediation Gateways, Mapping Services, Transposition Agents

NCC

PDQ
<table>
<thead>
<tr>
<th></th>
<th>Table of content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>What Engineering?</td>
</tr>
<tr>
<td>2.</td>
<td>What Product Data Quality (PDQ)?</td>
</tr>
<tr>
<td>3.</td>
<td>Why integrate PDQ into Engineering?</td>
</tr>
<tr>
<td>4.</td>
<td>What is the eCl@ss engineering impact formula?</td>
</tr>
<tr>
<td>5.</td>
<td>What is needed to support 2030 Engineering?</td>
</tr>
<tr>
<td>6.</td>
<td>What shall be possible, how are we striving?</td>
</tr>
</tbody>
</table>
What is the eCl@ss engineering impact formula?

\[\text{NCC} = f \left(\frac{1}{\text{PDQ}} \right) \]

Cost (Effort) = f \[\text{PDQ}_{\text{incr.}} \]

\[\text{PDQ}^{[0\ldots1]} = \text{PDC}_1^{[0\ldots1]} \times \text{PDC}_2^{[0\ldots1]} \times \text{PDC}_3^{[0\ldots1]} \]
Table of content

1. What Engineering? 3
2. What Product Data Quality (PDQ)? 6
3. Why integrate PDQ into Engineering? 8
4. What is the eCl@ss engineering impact formula? 11
5. What is needed to support 2030 Engineering? 13
6. What shall be possible, how are we striving? 15
What is needed to support 2030 Engineering?
A most comprehensive digital twin of any real world asset!

C_E ≈ 0.05 C_P

Quelle: Siemens
Table of content

1. What Engineering?
2. What Product Data Quality (PDQ)?
3. Why integrate PDQ into Engineering?
4. What is the eCl@ss engineering impact formula?
5. What is needed to support 2030 Engineering?
6. What shall be possible, how are we striving?
What shall be possible, how are we striving?

eCl@ss ➔ the universal ontology for semantic repositories!